Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

نویسندگان

  • Ryan T. Terry-Lorenzo
  • Lawrence E. Chun
  • Scott P. Brown
  • Michele L. R. Heffernan
  • Q. Kevin Fang
  • Michael A. Orsini
  • Loredano Pollegioni
  • Larry W. Hardy
  • Kerry L. Spear
  • Thomas H. Large
چکیده

The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, 'compound 2' [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yeast D-amino acid oxidase: structural basis of its catalytic properties.

The 3D structure of the flavoprotein D-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis (RgDAAO) in complex with the competitive inhibitor anthranilate was solved (resolution 1.9A) and structural features relevant for the overall conformation and for catalytic activity are described. The FAD is bound in an elongated conformation in the core of the enzyme. Two anthranilate molecules...

متن کامل

The identity of the active site of oxalate decarboxylase and the importance of the stability of active-site lid conformations.

Oxalate decarboxylase (EC 4.1.1.2) catalyses the conversion of oxalate into carbon dioxide and formate. It requires manganese and, uniquely, dioxygen for catalysis. It forms a homohexamer and each subunit contains two similar, but distinct, manganese sites termed sites 1 and 2. There is kinetic evidence that only site 1 is catalytically active and that site 2 is purely structural. However, the ...

متن کامل

Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family.

We have used continuum electrostatic methods to investigate the role of electrostatic interactions in the structure, function, and pH-dependent stability of the fungal Rhizomucor miehei lipase (RmL) family. We identify a functionally important electrostatic network which includes residues S144, D203, H257, Y260, H143, Y28, R80, and D91 (residue numbering is from RmL). This network consists of r...

متن کامل

Evidence for the Role of an Active Site Arginine

This work presents strong evidence that the role of the active site arginine in D-amino acid oxidase is to act as a positively charged group interacting with the flavin N(l)--C(S)=O locus. Modification with cyclohexanedione, which has been shown previously to m dify specifically an active site arginine in D-amino acid oxidase (Ferti, C., Curti, B., Simonetta, M. P., Ronchi, S., Galliano, M., an...

متن کامل

The open lid mediates pancreatic lipase function.

Pancreatic triglyceride lipase (PTL) and the homologous pancreatic lipase related protein 2 (PLRP2) provide a unique opportunity to understand the molecular mechanism of lipolysis. They differ in substrate specificity, sensitivity to bile salts, and colipase dependence despite their close amino acid and tertiary structure identity. One important structure, present in both lipases, is the lid wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2014